

Reg. No. :

Name :

III Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS MAT3C14 : Advanced Real Analysis

Time : 3 Hours

Max. Marks: 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Distinguish between pointwise boundedness and uniform boundedness of sequence of functions on a set E.
- 2. Define the limit function of sequence {f,} of functions and show that for

m, n = 1, 2, 3, ..., if
$$S_{m,n} = \frac{m}{m+n}$$
, then $\lim_{n \to \infty} \lim_{m \to \infty} S_{m,n} \neq \lim_{m \to \infty} \lim_{n \to \infty} S_{m,n}$.

- 3. Define beta function.
- 4. Show that the functional equation $\Gamma(x + 1) = x\Gamma(x)$ holds if $0 < x < \infty$.
- 5. Prove that a linear operator A on a finite-dimensional vector space X is one-toone if and only if the range of A is all of X.
- 6. State the implicit function theorem.

(4×4=16)

PART – B

Answer 4 questions from this Part without omitting **any** Unit. **Each** question carries **16** marks.

Unit – I

- 7. State and prove the Stone-Weierstrass theorem.
- 8. a) Show that there exists a real continuous function on the real line which is nowhere differentiable.
 - b) If {f_n} is a pointwise bounded sequence of complex functions on a countable set E, then show that the {f_n} has a subsequence {f_{nk}} such that {f_{nk}(x)} converges for every $x \in E$.

K23P 1411

K23P 1411

 $(4 \times 16 = 64)$

- 9. a) If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, then prove that $\{f_n + g_n\}$ converges uniformly on E.
 - b) If $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, then prove that $\{f_n . g_n\}$ converges uniformly on E.
 - c) Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n$ for $x \in E$ and n = 1, 2, 3, ..., then prove that $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Unit – II

- 10. a) Suppose that the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R, and if $f(x) = \sum_{n=0}^{\infty} c_n x^n$, then prove that the function f is continuous and differentiable in (-R, R), and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$ where |x| < R.
 - b) State and prove Taylor's theorem.
- 11. State and prove Parseval's theorem.
- 12. a) If x > 0 and y > 0, then show that $\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.
 - b) If f is continuous (with period 2π) and if $\epsilon > 0$, then prove that there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.

Unit – III

- 13. a) Define dimension of a vector space.
 - b) Let r be a positive integer, if a vector space is spanned by a set of r vectors, then prove that dim X \leq r.
 - c) Show that dim $\mathbb{R}^n = n$.
- 14. a) Define a continuously differentiable mapping.
 - b) Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then prove that $f \in \mathscr{C}|(E)$ if and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le m$.
- State and prove inverse function theorem.